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On the Existence of Regions with Minimal Third 
Degree Integration Formulas* 

By F. N. Fritsch 

Abstract. A. H. Stroud has shown that n + 1 is the minimum possible number of nodes in 
an integration formula of degree three for any region in En. In this paper, in answer to the 
question of the attainability of this minimal number, we exhibit for each n a region that 
possesses a third degree formula with n + 1 nodes. This is accomplished by first deriving 
an (n + 2)-point formula of degree three for an arbitrary region that is invariant under 
the group of affine transformations that leave an n-simplex fixed. The formula is then 
applied to a one-parameter family of such regions, and a value of the parameter is deter- 
mined for which the weight at the centroid vanishes. 

1. Introduction. An approximate N-point integration formula of the form 
N 

I(f) f dA = Ak f(xk) + E(f), 

with nodes Xk and weights A,, for a region R in n-dimensional Euclidean space En, 
where d,; is ordinary n-dimensional Lebesgue measure, is said to be of degree m if 
E(f) 0 whenever f is a polynomial of degree at most m in the n variables x = 

(xl, , x,). Such a formula is said to be positive if A, > 0 for k = 1, * , N; 
self-contained if x, E R for k = 1, * * *, N. 

Let S. be the n-simplex with vertices vo, v1, , vn and let c be the centroid 
of S,,. Let R be any subset of En with positive Lebesgue measure which is invariant 
under the group of affine transformations that map S, onto itself. A region that 
possesses this property for some S, will be called simplicially-symmetric. We assume 
that all polynomials of degree at most three in the n variables are integrable over 
R. We shall consider third degree (n + 2)-point formulas of the form 

I' 

(1) J of dl = A x (xk) + BI(c) + E(f), 

where 
xk = rvk+(t -r)c (k = 0, 1, ,n). 

In this paper we obtain a condition on the simplicially-symmetric region R for 
the existence of a formula of form (1) which is of degree three. We derive general 
expressions for the unknowns A, B and r, and show that the weight A must be posi- 
tive, while B is unrestricted in sign. We exhibit a region for which B = 0. so that 
the formula actually involves only n + 1 points. Stroud [6] has shown that n + 1 
is the smallest number of nodes possible in an integration formula of degree three 
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for any region, but it was not known in general prior to the publication of this 
example whether this minimal number was attained by any region. In fact a con- 
jecture to the contrary was made by Hammer and Stroud [3]. 

Specifically, a one-parameter family of star-shaped simplicially-symmetric regions 
Sn(d) is studied. There is a unique value d = d* for which the formula failF to exist. 
A result due to Mysovskikh [5] enables us to explain the failure for n = 2 and 3, 
but the significance of Sn(d*) is still unexplained for n > 3. A unique value d= 
dn = d* is determined for which the number of nodes reduces to n + 1. The formula 
is positive for d > dn. It is further shown that the formula is self-contained for all d. 
We have proved [2, pp. 96-104] that S2(d2) is an isolated example, in the sense that 
any three-point third degree formula for a member S2(d) of the family must be of 
form (1) with B = 0. It is not known whether the same is true for n > 2. 

The results reported here provide further evidence in support of the concluding 
remark of Stroud [7]: ". . . the minimal point formulas of degree 3 for a region are 
related to the group of symmetries of the region." 

2. Derivation of Formulas for the Unknowns. As discussed by Hammer and 
Wymore [4], we may identify any two regions that are affine-equivalent for the 
purpose of deriving approximate integration formulas. We may accordingly take 
SR to be the n-simplex 

(2) {x E En: x; 2 0, xI + x2 + * + n 

THEOREM. If we determine A, B, and r so that formula (1) is exact for the three 
monomials 1, x2, X3, then the formula is of degree three. 

This theorem is proved in Stroud [8]. His proof is based on a special case of the 
following lemma. 

LEMMA. Let L be a linearfunctional which is invariant under the symmetries of Sn; that 
is, if T is an affine transformation for which TSn = Sn and if g(x) = f(Tx), then L(g) = 
L(f). If 0 ? k < n and Ia }ai is a sequence ofpositive integers, then L(x ...X** * Xk l) 

can be expressed as a linear combination of the values of L on the k + 1 monomials 

xII x%", I (j = 1, 2, , k), 
i.Jk ig/9 

where b;, is the Kronecker delta symbol, and the empty product 

IIX, = 1. 
tso 

The proof depends mainly on the invariance of L under the affine transforma- 
tion which interchanges vertices vo (= 0) and v,,+ (= (k + 1)th unit vector) of S,. 
Use of the Lemma allows us to express L(f), where f is any polynomial of degree 
at most three, as a linear combination of L(1), L(x2), L(xI). Noting that both sides 
of (1) have the required invariance proves the Theorem. 

By application of the Theorem, a necessary and sufficient condition for (1) to be 
a formula of degree three for the simplicially-symmetric region R is that A, B, and 
r be solutions of the following system of nonlinear equations: 
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(+ nrI A + 1); (4) A+- ,2B= 2= x) 
n+1I (n +1) 

1 + 3nr2 + n(n - 1)r A 3B = I3 el4). 

We may use Eq. (3) to eliminate B from the other two equations 

(4') n(n + 1)Ar2 =J2 (n + 1)22 - IO; 

(5') n(n + 1)[(n- I)r + 3]Ar2 =J3 (n + 1)3I3 - IO. 

Since 

J2 [(n + 1)xj - 1]2 dA > 0, 

necessary conditions for the existence of a solution are A > 0 and r $ 0. Substituting 
Eq. (4') into (5') and solving for r, we obtain 

J3- 3J2 _ D (6) r =(1)J (-D 

Thus a necessary and sufficient condition on the region R for the existence of a third 
degree formula ofform (1) is that 

(7) D = f [(n + 1)x - 1i]3 djl 0 0. 

If R satisfies Eq. (7), then there exists a unique formula (1) given by Eq. (6), 

(8) A = _(n 
- 1 

_2(n - 

n(n + 1)r2 n(n + 1)D2 

and 

nI0D2-(n ---12 J2 P 
(9) B = Io-(n + 1)A= A2nD2 I I 

While A is always positive, the sign of B is determined by that of P. We observe 
that, since J2 > 0, P = 0 implies D $ 0. Thus if we can find a region R for which 
P = 0 we will have an example of a region that possesses a positive formula of 
degree three with the minimum possible number of nodes. 

3. A Family of Star-Shaped Simplicially-Symmetric Regions. In the remainder 
of this paper we shall apply these formulas to a family of star-shaped simplicially- 
symmetric regions Sn(d) over which the necessary integrals can be computed, in 
order to prove the existence of a region for which this minimal number of nodes is 
attained. For notational clarity, if Q is one of the quantitites introduced in the pre- 
ceding section, then Qn(d) will denote the value of this quantity for Sn(d). The order 
of presentation will be as follows: 

1. Derive formulas for A.(d), B.(d), and rn(d) as rational functions of the param- 
eter d, with coefficients which are polynomials in the dimension n. 
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2. Prove the existence of a unique value d. of d for which Pn(dn) = 0, so that 
SR(dfl) possess a formula of form (1) with B = 0. 

3. Prove that there exists a unique value d* of d for which D&(dt) = 0, and con- 
sequently formula (1) fails to exist for Sn(d*). 

4. Finally, show that the formula is self-contained for all d > 0, d z d*. (Note 
that formula (1) need not be self-contained, in general.) 

The regions Sn(d) are defined as follows. Let Sn be the n-simplex with vertices 
vO, v1, .- , v". Let F, be the face of Sn that does not contain the vertex vk and let 
ck be the centroid of F,. Let d > 0 and define the points uk(d) by: 

uk(d) = dck + (I -d)c (k = 0, 1, ***, n). 

Let S,,k(d) be the pyramid (simplex) with base Fk and vertex uk(d). (S"k(d) degenerates 
to the face Fk when d = 1.) Define 

n 

Sn(d) = SU (. U Snk(d)) ifd 1; 
k-0 

n 

= S(C U Sfk(d) if O < d < 1. 

Clearly, Sn(l) = Sn. For d > 1, this star-shaped polyhedral region can be visualized 
as the result of "pushing out" the center of each face of Sn. This family of regions was 
previously studied for n = 2 by De Vogelaere [1], who knew of the existence of S2(d2). 
Since uk(d) lies on the line determined by vk and c, the set {uo(d), ul(d), * * *, un(d)} 
is invariant under any affine transformation that leaves Sn invariant, and Sn(d) is 
simplicially-symmetric. 

4. Application of the Formulas to Sn(d). Let us now specialize Sn to the simplex 
(2). If we use the natural simplicial decomposition of Sn(d), a straightforward but 
extremely tedious computation [2, pp. 72-75, 151-159] yields the following values 
for the needed monomial integrals: 

lo(d)= 
d 

J(d) n+ 
2d [d2 + (n- l)d + n2(n + 2)], n(n + 1)2 (n + 2)! 

hn~d n 2n +1)3 (n + 3)! [(1 - n)d3 + (5n - 1)d2 

+ n(n - 1)(n + 4)d + n2(n3 + 3n2 + 2n - 2)]. 

We may now compute An(d), Bn(d), and rn(d). 

J2n(d) = (n + 1)2I2.(d) - Ion(d) = n(n + 2)! 

where 

(10) tn(d) = 2d2 + 2(n - l)d + n(n - 1)(n + 2). 

d 
n 2n 

3) 
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where 

X,(d) = 6(1 - n)d3 + 6(5n - 1)d2 

+ 6n(n - 1)(n + 4)d + n2(n - 1)(5n2 + 17n + 18). 

(I11) D.(d) = J3n(d) - 3 J2n(d) - - 2(n - I)d qfn(d) n (n?+ 3)! 

where 

(12) c((d) = 3d3 + 3(n - 1)d2 - 3nd - n3(n + 1). 

From Eq. (6) we obtain: 

(13) r~~~(d) = ~ Djd) -2 cfj(d) 
(n - 1) J2n(d) n(n + 3) i,&n(d) 

Provided D"(d) 0 0, we similarly obtain from Eqs. (8) and (9) the following: 

(n + 3)2 d [ib,(d)13 
(14) A.(d) =4(n + 1)(n + 2)!. [0.(d)12 

(15) ~~~B.(d)= _____ 
d F.(d) 

() n[D.(d)] 4(n + 2)! [4.(d)12 
where 

(16) F3(d) = 4(n + 1)(n + 2)[q5f(d)]2 - (n + 3)2[1k.(d)]3. 

5. A Region that Possesses an (n + 1)-Point Formula of Degree Three. We 
have seen that, whenever Dn(d) ? 0, Sn(d) possesses a third degree formula of the 
form (1) with r = rn(d), A = An(d), and B = Bn(d) given by Eqs. (13), (14), and (15), 
respectively. From Eq. (15) we see that B7,(d), the weight at the centroid, is negative, 
zero, or positive according as the polynomial Fn(d) is negative, zero, or positive. 
Hammer and Stroud [3] showed that Bn(l) is negative, while the leading coefficient 
of F.(d) is 4n(7n + 15) > 0. Hence there exists a dn > 1 such that Fn(dn) 0. As 
remarked above, Dn(dn) $ 0. Thus, S7,(dn) possesses a positive (n + 1)-point formula 
of degree three, providing the first known example of a region with the minimal 
number of nodes. 

A consideration based on the Descartes rule of signs and the use of a polynomial 
root finder to compute the real and complex roots of the polynomials in n that 
appear in the coefficients of F(c(d) in Eq. (16) enables us to conclude [2, pp. 77-80] 
that Fn(d) possesses a single positive root and dn is uniquely determined for n > 3. 
The case n = 2 deserves special attention. F2(d) has two positive roots, one between 
0 and 1 and the other greater than 1. One may easily verify that F2(4/d) = (2/d)6F2(d), 
so that F2 is "reciprocal" in the sense that if d is a root, so is 4/d. The geometrical 
significance of this property of F2 is that S2(4/d) is similar to S2(d). Thus, the two 
positive roots of F2 must result in similar figures, and d2 is essentially unique. The 
two reciprocal figures S2(d2) and S2(4/d2), based on an equilateral triangle, are 
depicted in Fig. 1. 

6. The Exceptional Member of the Family. From Eq. (12) we see by the 
Descartes rule of signs that 0,, has exactly one positive root, which we shall call d*. 
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FIGURE 1. S2(d2) and (shaded) S2(4/d2), two planar regions which possess three-point formula 
of degree three. The x's locate the nodes for S2(d2). 

From Eq. (11) we see that Dn(d*) = 0 and Dn(d) - 0 for d 9d d*. In other words, 
there is only one member Sn(d*) of the family for which a formula of the desired 
form fails to exist. Since J2n(d) > 0 for all d > 0, Eq. (13) shows that the sign of 
rft(d) is the same as that of D,,(d), and that rn(d*) = 0. Thus, the formula fails to 
exist because all n + 2 nodes coincide, and their associated weights become infinite. 

For n = 2, d* = 2 is the unique positive value of d for which 4/d = d. When 
based on an equilateral triangle, S2(2) is a regular hexagon. It is the only centrally- 
symmetric member of the family. As Mysovskikh [5] shows, there exist infinitely 
many third degree four-point formulas for S2(2), but none of them has c as one 
of its nodes. A formula of form (1) must fail to exist, because the four nodes are 
not centrally-symmetric with respect to c. For n = 3, d*- 3. Again, S3(3) is the 
only centrally-symmetric member of the family. (When based on a regular tetra- 
hedron, it is a cube.) In this case, since the Mysovskikh result shows that six is the 
minimal number of nodes for third degree formulas on S3(3), a 5-point formula 
must fail to exist. For n > 3, d* > n. We remark that in this case there is no centrally- 
symmetric member of the family, and the significance of the nonexistence of such 
a formula for Sn(d*) is still not known for n > 3. 

We know from the general theory of Section 2 that d, $ d*. In fact, one can 
show [2, pp. 82-85] that for all n > 2, 

d* < n4/3 < 5 

This separation property is illustrated in Fig. 5-1 of [2, p. 95]. 
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7. Self-Containment of the Formulas. We show further that the formula is 
self-contained for all d > 0 (d 0 dn) and all n > 2. Note that this does not follow 
from the general theory. It is evident that uk(d) and xk both lie on the line determined 
by vk and c. uk(d) is on the opposite side of c from v*. If rn(d) > 0, xk is on the same 
side as v,, and the condition for self-containment in this case is 

(17) rn(d) ! 1 for 0 < d < dn.- 

If rn(d) < 0, xk is on the same side as uk(d), and the condition for self-containment is 

(18) Pn(d)- -drn(d) _ 1 for d > d*. d 

Condition (17) can be verified by differentiating Eq. (13) and observing that 
r'(d) < 0 for all d > 0, n > 2. Since one can easily see that rn(0) < 1, (17) holds 
with strict inequality. From Eqs. (10), (12), (13), condition (18) can be shown to 
hold with strict inequality by observing that 2qpn(d) < (n + 3) d/'n(d) for all d > d*, 
n _ 2. We remark that numerical computations have shown that pn(dn) < .5 for 
n - 2(1)50, and indicate that pn(dn) decreases monotonically to zero as n --> a. 
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